Abstract

The most common recurrent copy-number variants associated with autism, developmental delay and epilepsy are flanked by segmental duplications. Complete genetic characterization of these events is challenging because their breakpoints often occur within high-identity, copy-number polymorphic paralogous sequences that cannot be specifically assayed using hybridization-based methods. Here we provide a protocol for breakpoint resolution with sequence-level precision. Massively parallel sequencing is performed on libraries generated from haplotype-resolved chromosomes, genomic DNA or molecular inversion probe (MIP)-captured breakpoint-informative regions harboring paralog-distinguishing variants. Quantification of sequencing depth over informative sites enables breakpoint localization, typically within several kilobases to tens of kilobases. Depending on the approach used, the sequencing platform, and the accuracy and completeness of the reference genome sequence, this protocol takes from a few days to several months to complete. Once established for a specific genomic disorder, it is possible to process thousands of DNA samples within as little as 3-4 weeks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.