Abstract

Contact dynamics (CD) is a powerful method to solve the dynamics of large systems of colliding rigid bodies. CD can be computationally more efficient than classical penalty-based discrete element methods (DEM) for simulating contact between stiff materials such as rock, glass, or engineering metals. However, by idealizing bodies as perfectly rigid, contact forces computed by CD can be non-unique due to indeterminacy in the contact network, which is a common occurence in dense granular flows. We propose a frictionless CD method that is designed to identify only the unique set of contact forces that would be predicted by a soft particle method, such as DEM, in the limit of large stiffness. The method involves applying an elastic compatibility condition to the contact forces, which maintains no-penetration constraints but filters out force distributions that could not have arisen from stiff elastic contacts. The method can be used as a post-processing step that could be integrated into existing CD codes with minimal effort. We demonstrate its efficacy in a variety of indeterminate problems, including some involving multiple materials, non-spherical shapes, and nonlinear contact constitutive laws.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.