Abstract
Liquid metals (LMs) have the potential to revolutionise many important technologies, ranging from battery components to catalytic reactions. Low melting temperature gallium (Ga) is particularly promising as a solvent in many LM alloys, due to the low energy cost of maintaining its liquid state. However, despite 30+ years of study on the nature of Ga's liquid structure, it remains enigmatic with significant disagreement among the many published reports. In this work, we reconcile many of the conflicts through analysis of extensive ab initio molecular dynamics simulations of bulk Ga liquid at different temperatures. Contrary to previous assumptions, covalency becomes more important in the liquid at higher temperatures, meaning that covalency is not a significant feature of the liquid near the phase transition temperature. This explains the experimental observation of a decrease of resistivity of the metal upon melting, and its subsequent anomalously nonlinear increase with temperature. This revised understanding of structuring in the liquid has implications for the way these alloys are tailored for specific applications in the rapidly developing field of LMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.