Abstract

The simulation of strongly correlated many-electron systems is one of the most promising applications for near-term quantum devices. Here we use a class of eigenvalue solvers (presented in Phys. Rev. Lett. 126, 070504 (2021)) in which a contraction of the Schr\"odinger equation is solved for the two-electron reduced density matrix (2-RDM) to resolve the energy splittings of ortho-, meta-, and para-isomers of benzyne ${\textrm C_6} {\textrm H_4}$. In contrast to the traditional variational quantum eigensolver, the contracted quantum eigensolver solves an integration (or contraction) of the many-electron Schr\"odinger equation onto the two-electron space. The quantum solution of the anti-Hermitian part of the contracted Schr\"odinger equation (qACSE) provides a scalable approach with variational parameters that has its foundations in 2-RDM theory. Experimentally, a variety of error mitigation strategies enable the calculation, including a linear shift in the 2-RDM targeting the iterative nature of the algorithm as well as a projection of the 2-RDM onto the convex set of approximately $N$-representable 2-RDMs defined by the 2-positive (DQG) $N$-representability conditions. The relative energies exhibit single-digit millihartree errors, capturing a large part of the electron correlation energy, and the computed natural orbital occupations reflect the significant differences in the electron correlation of the isomers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.