Abstract
Vertical profiles of the dissolved and particulate (>0.45 μm) concentrations of Fe, Mn, Co, Ni, Cu, Pb, Al and Ba were determined on two occasions (14 and 22 August 1996) during summer stratification in a seasonally anoxic lake (Esthwaite Water, UK). The results were combined with contemporaneous in situ measurements of water-column remobilization of the metals from settling particles at the base of the suboxic zone and other ancillary measurements. The combined data were interpreted with the aid of an equilibrium speciation model (WHAM6), incorporating metal-humic interactions and a surface-complexation description of binding to Fe and Mn oxides. The behavior of all the metals was related in different ways to the position of the O 2-H 2S interface and to Fe and Mn redox cycling. In the region of the O 2-H 2S interface the behavior of Co and to a lesser degree Ni was dominated by Mn redox cycling. Ba behavior was dominated by the biogenic precipitation and dissolution of barite and to a lesser degree by Mn redox cycling. The behavior of Al was linked to both Mn and Fe redox cycling, although the extent of binding to the oxides and to humic substances was poised with respect to pH. Unlike the other metals, the profiles of Pb and Cu showed little variation above the dissolved sulfide maximum, but modeling indicated that binding of Pb was significant to both Mn and Fe oxides. The featureless nature of the Cu profiles in the upper part of the water column was linked to its overriding association with dissolved humic substances. Below the dissolved sulfide maximum, Co, Ni, Ba, Cu, Pb and Mn were all affected by sulfide precipitation, probably through a common association with FeS. In the case of Co, Ni, Cu and Pb, inverse relationships between the measured dissolved and particulate concentrations were attributed to the coexistence of both filterable and nonfilterable FeS particles and associated mass balance effects. The observed behavior of the metals in relation to the role played by Fe and Mn oxides was generally consistent with WHAM6 predictions. The model predictions highlighted the fact that trace metal speciation in general, and binding to Mn and Fe oxides in particular, can be highly sensitive to the variations in solution conditions found in freshwater systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.