Abstract
Abstract This paper develops a theoretical basis and a systematic process for resolving all inertia forces along generalized coordinates from the overall energy equation of a dynamical system. The theory is developed for natural systems with scleronomic constraints, where the potential energy is independent of generalized velocities. The process involves expansion of the energy equation, and specifically a special expansion of the kinetic energy term, from which the inertia forces emerge. The expansion uses fundamental kinematic identities of the phase space. It is also guided by insights drawn from the structure of the Hamiltonian function. The resulting equation has the structure of the D’Alembert’s equation but involving generalized coordinates, from which the Lagrange’s equations of motion are obtained. The expansion process elucidates how certain inertia forces manifest in the energy equation as composite terms that must be accurately resolved along different generalized coordinates. The process uses only the system energy equation, and neither the Hamiltonian nor the Lagrangian function are required. Extension of this theory to non-autonomous and non-holonomic systems is an area of future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.