Abstract

In Fourier-domain optical coherence tomography, an interference signal is generated that spans an RF bandwidth proportional to the product of three parameters: the imaging range, the imaging speed, and the inverse of the axial resolution. Circular-ranging optical coherence tomography (CR-OCT)architectures were introduced to ease long-range imaging by decoupling the imaging range from the signal RF bandwidth. As a consequence, present CR-OCT systems resolve the relative, but not the absolute, depth location of the scatterers. We introduce here a modified implementation of CR-OCT that uses a degenerate frequency comb source that allows recovery of absolute depth information while only minimally impacting the previously described RF bandwidth compression benefits of CR. We show that this degenerate frequency comb can be created by relatively simple modifications to existing frequency comb source designs, and we present absolute ranging capabilities through imaging studies and simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call