Abstract
Doxorubicin (DOX)-induced cardiotoxicity impairs the quality of life of cancer patients during or after DOX treatment, and it is imperative to explore a novel strategy to address this problem. Resolvin E1 (RvE1) is derived from eicosapentaenoic acid (EPA), which has been reported to exert beneficial effects on DOX-induced oxidative stress in cardiomyocytes. This study was designed to investigate whether RvE1 protects against DOX-induced cardiotoxicity, and the underlying mechanism was explored. DOX (20 mg/kg, one injection, i.p.) was used to induce DOX-induced cardiotoxicity in C57BL/6 mice. At 5 days after DOX administration, the effect of RvE1 was assessed by measuring cardiac function, oxidative stress, autophagy and apoptosis in cardiac tissue. We used an AKT inhibitor and rapamycin to investigate the underlying mechanisms. Our results showed that RvE1 inhibited the DOX-induced decrease in body weight and heart weight, the reduction in left ventricular ejection fraction and fractional shortening, and the increase in lactate dehydrogenase, creatine kinase myocardial bound and cardiomyocyte vacuolization. Compared to the control group, the DOX group exhibited increased oxidative stress, autophagy and apoptosis in cardiac tissue, which were alleviated by treatment with RvE1. The AKT/mTOR signaling pathways were responsible for RvE1-mediated regulation of DOX-induced oxidative stress, autophagy and myocardial apoptosis. In conclusion, RvE1 protected against DOX-induced cardiotoxicity via the regulation of AKT/mTOR signaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.