Abstract

Resolvin D1 (RvD1) is a novel endogenous docosahexaenoic acid (DHA)-derived lipid mediators, which possesses a dual role of anti-inflammation and promotes inflammation resolution. The aim of the present study was to assess the effects of RvD1 on cecal ligation and puncture (CLP) model of sepsis and explore the underlying mechanism. Six-to-eight-week-old male C57BL/6 mice were randomly divided into following three groups: sham-operated group (SO), CLP model group (CLP), and CLP+RvD1 group (RvD1). The SO group underwent the sham operation. The RvD1 groups were administered RvD1 (10-ng/g body weight) by penile vein injection, but the CLP groups were administered the same volume of vehicle (PBS) after CLP. We assessed the survival benefit of RvD1 in CLP-induced septic mice for 7days. After 24h, mice were sacrificed, bronchoalveolar lavage fluids (BALF) was collected for proinflammatory cytokines assay, and albumin assay and the lung tissues were harvested for histologic analysis, myeloperoxidase (MPO) activity and the expression of Sirtuin 1 (SIRT1), signal transducers, and activators of transcription 3 (STAT3), nuclear factor-κB (NF-κB), and mitogen-activated protein kinases (MAPKs). RvD1 treatment increased the survival time in mice with sepsis induced by CLP, reducing the MPO activity and albumin level at 24h. The levels of inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) in BALF were significantly decreased by RvD1. RvD1 promoted SIRT1 expression and suppressed the activation of NF-κB, STAT3, ERK, and p38 in lung tissues of septic mice. These results suggest that RvD1 may improve survival and attenuate the degree of lung inflammation reaction in mice with CLP by suppressing STAT3, NF-κB, ERK, and p38 expressions through a mechanism partly dependent on SIRT1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call