Abstract

BackgroundCancer stem cells (CSCs) require stromal signals for maintaining pluripotency and self-renewal capacities to confer tumor metastasis. Resolvin D1 (RvD1), an endogenous anti-inflammatory lipid mediator, has recently been identified to display anti-cancer effects by acting on stroma cells. Our previous study reveals that hepatic stellate cells (HSCs)-derived cartilage oligomeric matrix protein (COMP) contributes to hepatocellular carcinoma (HCC) progression. However, whether RvD1 inhibits paracrine of cancer-associated fibroblasts (CAFs)-derived COMP to prevent epithelial-mesenchymal transition (EMT) and cancer stemness in HCC remains to be elucidated.MethodsCAFs were isolated from HCC tissues. Direct and indirect co-culture models were established to analyze the interactions between HCC cells and CAFs in the presence of RvD1 in vitro. The transwell and tumor sphere formation assays were used to determine invasion and stemness of HCC cells. The subcutaneous tumor formation and orthotopic liver tumor models were established by co-implantation of CAFs and HCC cells to evaluate the role of RvD1 in vivo. To characterize the mechanism of RvD1 inhibited paracrine of COMP in CAFs, various signaling molecules were analyzed by ELISA, western blotting, reactive oxygen species (ROS) detection, immunofluorescence staining, dual luciferase reporter assay and chromatin immunoprecipitation assay.ResultsOur data revealed that RvD1 treatment can impede the CAFs-induced cancer stem-like properties and the EMT of HCC cells under co-culture conditions. In vivo studies indicated that RvD1 intervention repressed the promoting effects of CAFs on tumor growth and metastasis of HCC. Furthermore, RvD1 inhibited CAF-induced EMT and stemness features of HCC cells by suppressing the secretion of COMP. Mechanistically, formyl peptide receptor 2 (FPR2) receptor mediated the suppressive effects of RvD1 on COMP and forkhead box M1 (FOXM1) expression in CAFs. Notably, RvD1 impaired CAF-derived COMP in a paracrine manner by targeting FPR2/ROS/FOXM1 signaling to ultimately abrogate FOXM1 recruitment to the COMP promoter.ConclusionOur results indicated that RvD1 impaired paracrine of CAFs-derived COMP by targeting FPR2/ROS/FOXM1 signaling to repress EMT and cancer stemness in HCC. Thus, RvD1 may be a potential agent to promote treatment outcomes in HCC.

Highlights

  • Cancer stem cells (CSCs) require stromal signals for maintaining pluripotency and self-renewal capacities to confer tumor metastasis

  • The colony formation and MTT assays further revealed that Hep3B and SMMC-7721 cells co-cultured with CM from CAFs (CMCAFs) showed higher proliferation ability compared with control cells (P < 0.05, Fig. 1c and d)

  • We used an Enzyme-linked immunosorbent assay (ELISA) kit to quantify the content of Resolvin D1 (RvD1) in hepatocellular carcinoma (HCC), and we found that the content of RvD1 in HCC tissues was significantly decreased compared with the adjacent nontumor samples (P < 0.05, Additional file 5: Figure S3A)

Read more

Summary

Introduction

Cancer stem cells (CSCs) require stromal signals for maintaining pluripotency and self-renewal capacities to confer tumor metastasis. Whether RvD1 inhibits paracrine of cancer-associated fibroblasts (CAFs)-derived COMP to prevent epithelialmesenchymal transition (EMT) and cancer stemness in HCC remains to be elucidated. Cancer-associated fibroblasts (CAFs) are the most abundant cells in the tumor microenvironment (TME), a key source of the extracellular matrix that contributes to the desmoplastic stroma, and play crucial roles during cancer malignant progression and metastasis [4, 5]. CAFs are found in stroma-rich primary HCC and facilitate proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), therapeutic resistance, and induce cancer stem cell (CSC)-like phenotypes of HCC cells by reshaping the tumor microenvironment and paracrine of a variety of cytokines [6, 7]. Peri-tumor tissue-sourced fibroblasts secrete various cytokines, including IL-6, CXCL1, CCL2, SCGF-β, CXCL8 and HGF, to recruit cancer stem cells, maintain cancer stemness and promote intrahepatic metastasis of HCC [8]. The explicit mechanism accounting for the interactions between CAFs and HCC cells is complex and still obscure

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call