Abstract

Acute respiratory distress syndrome (ARDS), a common and fatal clinical condition, is characterized by the destruction of epithelium and augmented permeability of the alveolar-capillary barrier. Resolvin conjugates in tissue regeneration 1 (RCTR1) is an endogenous lipid mediator derived from docosahexaenoic acid , exerting proresolution effects in the process of inflammation. In our research, we evaluated the role of RCTR1 in alveolar fluid clearance (AFC) in lipopolysaccharide-induced ARDS/acute lung injury (ALI) rat model. Rats were injected with RCTR1 (5 μg/kg) via caudal veins 8 hours after lipopolysaccharide (LPS) (14 mg/kg) treatment, and then AFC was estimated after 1 hour of ventilation. Primary type II alveolar epithelial cells were incubated with LPS (1 ug/ml) with or without RCTR1 (10 nM) for 8 hours. Our results showed that RCTR1 significantly enhanced the survival rate, promoted the AFC, and alleviated LPS-induced ARDS/ALI in vivo. Furthermore, RCTR1 remarkably elevated the protein expression of sodium channels and Na, K-ATPase and the activity of Na, K-ATPase in vivo and in vitro. Additionally, RCTR1 also decreased neural precursor cell expressed developmentally downregulated 4-2 (Nedd4-2) level via upregulating Ser473-phosphorylated-Akt expression. Besides this, inhibitors of receptor for lipoxin A4 (ALX), cAMP, and phosphatidylinositol 3-kinase (PI3K) (BOC-2, KH-7, and LY294002) notably inhibited the effects of RCTR1 on AFC. In summary, RCTR1 enhances the protein levels of sodium channels and Na, K-ATPase and the Na, K-ATPase activity to improve AFC in ALI through ALX/cAMP/PI3K/Nedd4-2 pathway, suggesting that RCTR1 may become a therapeutic drug for ARDS/ALI. SIGNIFICANCE STATEMENT: RCTR1, an endogenous lipid mediator, enhanced the rate of AFC to accelerate the resolution of inflammation in the LPS-induced murine lung injury model. RCTR1 upregulates the expression of epithelial sodium channels (ENaCs) and Na, K-ATPase in vivo and in vitro to accelerate the AFC. The efficacy of RCTR1 on the ENaC and Na, K-ATPase level was in an ALX/cAMP/PI3K/Nedd4-2-dependent manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call