Abstract

In the present paper, we investigate global-in-time Strichartz estimates without loss on non-trapping asymptotically hyperbolic manifolds. Due to the hyperbolic nature of such manifolds, the set of admissible pairs for Strichartz estimates is much larger than usual. These results generalize the works on hyperbolic space due to Anker–Pierfelice and Ionescu–Staffilani. However, our approach is to employ the spectral measure estimates, obtained in the author's joint work with Hassell, to establish the dispersive estimates for truncated/microlocalized Schrödinger propagators as well as the corresponding energy estimates. Compared with hyperbolic space, the crucial point here is to cope with the conjugate points on the manifold. Additionally, these Strichartz estimates are applied to the L2 well-posedness and L2 scattering for nonlinear Schrödinger equations with power-like nonlinearity and small Cauchy data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.