Abstract

We study the randomness needed for approximating the output distribution of a multiple-access channel, where the original input processes are independent of each other. The approximation is achieved by simulating (possibly alternative) input processes at each of the entries, where the sources of randomness available for the simulators are independent of each other, and the simulators do not cooperate. The resolvability region of a multiple-access channel is defined as the set of all random-bit rate pairs at which accurate output approximation is possible, where the simulation accuracy is measured by the variational distance between finite-dimensional output distributions. Inner and outer bounds on the resolvability region are derived, and close relations between the concepts of resolvability region and capacity region are demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.