Abstract
Circulant networks are a very important and widely studied class of graphs due to their interesting and diverse applications in networking, facility location problems, and their symmetric properties. The structure of the graph ensures that it is symmetric about any line that cuts the graph into two equal parts. Due to this symmetric behavior, the resolvability of these graph becomes interning. Subdividing an edge means inserting a new vertex on the edge that divides it into two edges. The subdivision graph G is a graph formed by a series of edge subdivisions. In a graph, a resolving set is a set that uniquely identifies each vertex of the graph by its distance from the other vertices. A metric basis is a resolving set of minimum cardinality, and the number of elements in the metric basis is referred to as the metric dimension. This paper determines the minimum resolving set for the graphs Hl[1,k] constructed from the circulant graph Cl[1,k] by subdividing its edges. We also proved that, for k=2,3, this graph class has a constant metric dimension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.