Abstract

Conventional holographic stereogram (HS) can be generated through fast Fourier transforming parallax images into hogels. Conventional HS uses multiple plane waves to reconstruct 3D images with low resolution and is similar to the principle of depth priority integral imaging (II). We proposed the concept of resolution priority HS for the first time, which is based on the principle of resolution priority II, by adding a quadratic phase term on the conventional Fourier transform. In the proposed resolution priority HS, the resolution of reconstructed 3D images is much better than conventional HS, but the depth range is limited. To enhance the depth range, a multi-plane technique was used to present multiple central depth planes simultaneously. The proposed resolution priority HS with high resolution and enhanced depth range was verified by both simulation and optical experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.