Abstract

The Lagrange-mesh method is an approximate variational calculation which has the simplicity of a mesh calculation. Combined with the imaginary-time method, it is applied to the iterative resolution of the Gross-Pitaevskii equation. Two variants of a fourth-order factorization of the exponential of the Hamiltonian and two types of mesh (Lagrange-Hermite and Lagrange-sinc) are employed and compared. The accuracy is checked with the help of these comparisons and of the virial theorem. The Lagrange-Hermite mesh provides very accurate results with short computing times for values of the dimensionless parameter of the nonlinear term up to 10⁴. For higher values up to 10⁷, the Lagrange-sinc mesh is more efficient. Examples are given for anisotropic and nonseparable trapping potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.