Abstract
In this paper we propose a unified approach to (topological) string theory on certain singular spaces in their large volume limit. The approach exploits the non-commutative structure of D-branes, so the space is described by an algebraic geometry of non-commutative rings. The paper is devoted to the study of examples of these algebras. In our study there is an auxiliary commutative algebraic geometry of the center of the (local) algebras which plays an important role as the target space geometry where closed strings propagate. The singularities that are resolved will be the singularities of this auxiliary geometry. The singularities are resolved by the non-commutative algebra if the local non-commutative rings are regular. This definition guarantees that D-branes have a well defined K-theory class. Homological functors also play an important role. They describe the intersection theory of D-branes and lead to a formal definition of local quivers at singularities, which can be computed explicitly for many types of singularities. These results can be interpreted in terms of the derived category of coherent sheaves over the non-commutative rings, giving a non-commutative version of recent work by M. Douglas. We also describe global features like the Betti numbers of compact singular Calabi-Yau threefolds via global holomorphic sections of cyclic homology classes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.