Abstract

It has been reported that training deep neural networks is more difficult than training shallow neural networks. Hinton et al. proposed deep belief networks with a learning algorithm that trains one layer at a time. A much better generalization can be achieved when pre‐training each layer with an unsupervised learning algorithm. Since then, deep neural networks have been extensively studied. On the other hand, it has been revealed that singular points affect the training dynamics of the learning models such as neural networks and cause a standstill of training. Naturally, training deep neural networks suffer singular points. As described in this paper, we present a deep neural network model that has fewer singular points than the usual one. First, we demonstrate that some singular points in the deep real‐valued neural network, which is equivalent to a deep complex‐valued neural network, have been resolved as its inherent property. Such deep neural networks are less likely to become trapped in local minima or plateaus caused by critical points. Results of experiments on the two spirals problem, which has an extreme nonlinearity, support our theory. Copyright © 2017 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.