Abstract
Macropinosomes, phagosomes and autolysosomes are comparatively large, quasi-spherical organelles that play essential functions in immunity and homeostasis. These vacuolar organelles are relatively short-lived, promptly fragmenting into smaller structures. Vacuolar resolution is mediated by tubulation and vesiculation, processes orchestrated by protein complexes that are recruited to highly curved membranes. Importantly, the surface-to-volume ratios of the tubules and vesicles generated during the resolution process are considerably larger than that of the parental vacuole. Because membranes under high hydrostatic tension resist deformation, an active, concomitant loss of volume is required to sustain the resolution process and may even initiate tubulation and vesiculation. Despite its fundamental role in membrane remodeling, the mechanisms that account for organellar volume loss are poorly understood, but are likely to involve the export of solutes followed by osmotically obliged water. In this review, we describe the principles and possible mechanisms underlying the resolution of organelles, with particular attention paid to the osmolytes they contain and the pathways mediating their exit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.