Abstract
Abstract– The microstructures of lunar zircon grains from breccia samples 72215, 73215, 73235, and 76295 collected during the Apollo 17 mission have been characterized via optical microscopy, cathodoluminescence imaging, and electron backscatter diffraction mapping. These zircon grains preserve deformation microstructures that show a wide range in style and complexity. Planar deformation features (PDFs) are documented in lunar zircon for the first time, and occur along {001}, {110}, and {112}, typically with 0.1–25 μm spacing. The widest PDFs associated with {112} contain microtwin lamellae with 65°/<110> misorientation relationships. Deformation bands parallel to {100} planes and irregular low‐angle (<10°) boundaries most commonly have <001> misorientation axes. This geometry is consistent with a dislocation glide system with <100>{010} during dislocation creep. Nonplanar fractures, recrystallized domains with sharp, irregular interfaces, and localized annealing textures along fractures are also observed. No occurrences of reidite were detected. Shock‐deformation microstructures in zircon are explained in terms of elastic anisotropy of zircon. PDFs form along a limited number of specific {hkl} planes that are perpendicular to directions of high Young’s modulus, suggesting that PDFs are likely to be planes of longitudinal lattice damage. Twinned {112} PDFs also contain directions of high shear modulus. A conceptual model is proposed for the development of different deformation microstructures during an impact event. This “shock‐deformation mechanism map” is used to explain the relative timing, conditions, and complexity relationships between impact‐related deformation microstructures in zircon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.