Abstract
Let $I_1,\dots,I_n$ be ideals generated by linear forms in a polynomial ring over an infinite field and let $J = I_1 \cdots I_n$. We describe a minimal free resolution of $J$ and show that it is supported on a polymatroid obtained from the underlying representable polymatroid by means of the so-called Dilworth truncation. Formulas for the projective dimension and Betti numbers are given in terms of the polymatroid as well as a characterization of the associated primes. Along the way we show that $J$ has linear quotients. In fact, we do this for a large class of ideals $J_P$, where $P$ is a certain poset ideal associated to the underlying subspace arrangement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.