Abstract

The ruvA, ruvB, and ruvC genes of Escherichia coli provide activities that catalyze branch migration and resolution of Holliday junction intermediates in recombination. Mutation of any one of these genes interferes with recombination and reduces the ability of the cell to repair damage to DNA. A suppressor of ruv mutations was identified on the basis of its ability to restore resistance to mitomycin and UV light and to allow normal levels of recombination in a recBC sbcBC strain carrying a Tn10 insertion in ruvA. The mutation responsible was located at 12.5 min on the genetic map and defines a new locus which has been designated rus. The rus suppressor works just as well in recBC sbcA and rec+ sbc+ backgrounds and is not allele specific. Mutations in ruvB and ruvC are suppressed to an intermediate level, except when ruvA is also inactive, in which case suppression is complete. In all cases, suppression depends on RecG protein, a DNA-dependent ATPase that catalyzes branch migration of Holliday junctions. The rus mutation activates an additional factor that probably works with RecG to process Holliday junction intermediates independently of the RuvAB and RuvC proteins. The possibility that this additional factor is a junction-specific resolvase is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.