Abstract
This work provides the fundamental theoretical framework for molecular cavity quantum electrodynamics by resolving the gauge ambiguities between the Coulomb gauge and the dipole gauge Hamiltonians under the electronic state truncation. We conjecture that such ambiguity arises because not all operators are consistently constrained in the same truncated electronic subspace for both gauges. We resolve this ambiguity by constructing a unitary transformation operator that properly constrains all light-matter interaction terms in the same subspace. We further derive an equivalent and yet convenient expression for the Coulomb gauge Hamiltonian under the truncated subspace. We finally provide the analytical and numerical results of a model molecular system coupled to the cavity to demonstrate the validity of our theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.