Abstract
The frog erythrocyte membrane provides an excellent model system for the study of beta-adrenergic receptor-adenylate cyclase interactions since it possesses an adenylate cyclase enzyme which is very responsive to catecholamines. The purpose of these studies was to evaluate directly whether the functions of receptor binding and adenylate cyclase activity are carried out by a single macromolecule or separable molecular entities. Obtaining this information is a first step in understanding at a molecular level how receptor binding is "coupled" to enzyme activation. Binding and cyclase activities were solubilized from the frog erythrocyte membrane with digitonin and were observed to partition independently during gel exclusion chromatography in the presence of solubilizing detergent. This finding documents that the beta-adrenergic receptor and adenylate cyclase enzyme are, in fact, separable macromolecules. Under the particular experimental conditions employed, the elution of beta-adrenergic receptor binding on Sepharose 6B was not altered by the absence or presence of beta-adrenergic agonist or antagonist ligands or by exposure of the membranes prior to solubulization to the guanyl nucleotide analog, guanyl-5'-yl imidodiphosphate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.