Abstract

RmI, a circular chimera made of the polyomavirus (Py) genome with an insertion of mouse DNA (Ins), effectively undergoes intramolecular recombination in normal mouse cells, as indicated by the conversion of cloned RmI (RmIc) into unit-length Py DNA in transfected cultures. To follow the fate of the cellular component of RmI after recombination, the origin of simian virus 40 (SV40) DNA was inserted into the Ins region of RmIc, generating a new molecular species designated SV-RmIc. The recombination of SV-RmIc in simian cells synthesizing SV40 large T antigen gave rise to a molecule containing the SV40 origin, the reciprocal of unit-length Py DNA. However, SV-RmIc failed to yield unit-length Py DNA in murine cells unless Py large T antigen was provided in trans. In murine cells synthesizing SV40 large T antigen, the only detectable product from SV-RmIc contained only Py sequences, but was heterogeneous in size. These results and others also reported here strongly suggest that Py large T antigen plays a direct role in the resolution of RmI in murine cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.