Abstract

Spatial resolution is an important performance characteristic of spatial light modulators (SLM). One of the key factors affecting the spatial resolution of liquid crystal (LC)-based SLM is the fringing field effect. This effect can be reduced in thin LC cells with corresponding reduction in the electro-optical response. A strong electro-optic response in thin LC layer can be attained using the surface plasmon resonance (SPR) phenomenon. While SPR-based LC SLMs were already demonstrated about 15 years ago, their development has been hampered in part by low resolution, due to the finite propagation length of the surface plasmons (SPs). A fine patterning of the metal layer supporting the propagation of SPs is studied as a possible solution for reducing the spatial blurring associated with the long propagation length of SPs. The results of detailed computer simulations showing improved resolution SPR-LC–SLM are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.