Abstract

The Soil Moisture Active Passive (SMAP) mission includes a unique combination of instruments intended to provide daily global soil moisture data with high accuracy and resolution. Due to radar instrument failure, the default resolution of the data product decreased from the intended 9 km to 36 km shortly after the mission started to return data. To improve this, we employed the Scatterometer Image Reconstruction algorithm in its radiometer form (rSIR) to enhance the resolution of the radiometer brightness temperature measurements from which the soil moisture was derived. This paper compares the soil moisture estimates created from the rSIR-enhanced brightness temperatures with SMAP project radiometer L2_SM_SP and SMAP-Sentinel L2_SM_P products reported on 9 km and 3 km grids, respectively. We find that the difference of the rSIR-enhanced passive soil moisture product is generally within 0.020 cm3 cm−3 RMS of the 9 km SMAP radiometer L2_SM_SP and 0.045 cm3 cm−3 RMS of the 3 km SMAP-Sentinel L2_SM_P soil moisture products. The accuracy of the rSIR soil moisture can be improved by including better antenna pattern correction methods applied to the input TB measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call