Abstract

Photonic mixer device (PMD) range cameras are becoming popular as an alternative to algorithmic 3D reconstruction but their main drawbacks are low-resolution (LR) and noise. Recently, some interesting works have stressed on resolution enhancement of PMD range data. These works use high-resolution (HR) CCD images or stereo pairs. But such a system requires complex setup and camera calibration. In contrast, we propose a super-resolution method through induced camera motion to create a HR range image from multiple LR range images. We follow a Bayesian framework by modeling the original HR range as a Markov random field (MRF). To handle discontinuities, we propose the use of an edge-adaptive MRF prior. Since such a prior renders the energy function non-convex, we minimize it by graduated non-convexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.