Abstract
The concept of radar satellite constellations, or clusters, for synthetic aperture radar (SAR), moving target indicator (MTI), and other radar modes has been proposed and is currently under research. These constellations form an array that is sparsely populated and irregularly spaced; therefore, traditional matched filtering is inadequate for dealing with the constellation's radiation pattern. To aid in the design, analysis, and signal processing of radar satellite constellations and sparse arrays in general, the characterization of the resolution and ambiguity functions of such systems is investigated. We project the radar's received phase history versus five sensor parameters: time, frequency, and three-dimensional position, into a phase history in terms of two eigensensors that can be interpreted as the dimensions of a two-dimensional synthetic aperture. Then, the synthetic aperture expression is used to derive resolution and the ambiguity function. Simulations are presented to verify the theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Aerospace and Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.