Abstract
Abstract This study examines the sensitivity of atmospheric river (AR) frequency simulated by a global model with different grid resolutions and dynamical cores. Analysis is performed on aquaplanet simulations using version 4 of the Community Atmosphere Model (CAM4) at 240-, 120-, 60-, and 30-km model resolutions, each with the Model for Prediction Across Scales (MPAS) and High-Order Methods Modeling Environment (HOMME) dynamical cores. The frequency of AR events decreases with model resolution and the HOMME dynamical core produces more AR events than MPAS. Comparing the frequencies determined using absolute and percentile thresholds of large-scale conditions used to define an AR, model sensitivity is found to be related to the overall sensitivity of subtropical westerlies, atmospheric precipitable water content and profile, and to a lesser extent extratropical Rossby wave activity to model resolution and dynamical core. Real-world simulations using MPAS at 120- and 30-km grid resolutions also exhibit a decrease of AR frequency with increasing resolution over the southern east Pacific, but the difference is smaller over the northern east Pacific. This interhemispheric difference is related to the enhancement of convection in the tropics with increased resolution. This anomalous convection sets off Rossby wave patterns that weaken the subtropical westerlies over the southern east Pacific but has relatively little effect on those over the northern east Pacific. In comparison to the NCEP-2 reanalysis, MPAS real-world simulations are found to underestimate AR frequencies at both resolutions likely because of their climatologically drier subtropics and poleward-shifted jets. This study highlights the important links between model climatology of large-scale conditions and extremes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.