Abstract

Arguments about the safety, security, and correctness of a complex system are often made in the form of an assurance case. An assurance case is a structured argument, often represented with a graphical interface, that presents and supports claims about a system's behavior. The argument may combine different kinds of evidence to justify its top level claim. While assurance cases deliver some level of guarantee of a system's correctness, they lack the rigor that proofs from formal methods typically provide. Furthermore, changes in the structure of a model during development may result in inconsistencies between a design and its assurance case. Our solution is a framework for automatically generating assurance cases based on 1) a system model specified in an architectural design language, 2) a set of logical rules expressed in a domain specific language that we have developed, and 3) the results of other formal analyses that have been run on the model. We argue that the rigor of these automatically generated assurance cases exceeds those of traditional assurance case arguments because of their more formal logical foundation and direct connection to the architectural model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.