Abstract
Face recognition is an emerging field of research in recent days. With the rise of deep learning, face recognition has become efficient and precise, creating new milestones. The performance, accuracy, and computational time of the existing schemes can be enhanced by devising a new scheme. In this context, a multiclass classification framework for face recognition using residual network (ResNet) and principal component analysis (PCA) schemes of deep learning with Dlib library is proposed in this paper. The proposed framework produces face recognition accuracy of 99.6% and a reduction of computational time with 68.03% using principal component analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Intelligent Information Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.