Abstract

Sumatran Fault Zone is the most active fault in Indonesia as a result of strike-slip component of Indo-Australian oblique convergence. With the length of 1900 km, Sumatran fault was divided into 20 segments starting from the southernmost Sumatra Island having small slip rate and increasing to the north end of Sumatra Island. There are several geophysical methods to analyze fault structure depending on physical parameter used in these methods, such as seismology, geodesy and electromagnetic. Magnetotelluric method which is one of geophysical methods has been widely used in mapping and sounding resistivity distribution because it does not only has the ability for detecting contras resistivity but also has a penetration range up to hundreds of kilometers. Magnetotelluric survey was carried out in Aceh region with the 12 total sites crossing Sumatran Fault on Aceh and Seulimeum segments. Two components of electric and magnetic fields were recorded during 10 hours in average with the frequency range from 320 Hz to 0,01 Hz. Analysis of the pseudosection of phase and apparent resistivity exhibit vertical low phase flanked on the west and east by high phase describing the existence of resistivity contras in this region. Having rotated the data to N45°E direction, interpretation of the result has been performed using three different methods of 1D MT modeling i.e. Bostick inversion, 1D MT inversion of TM data, and 1D MT inversion of the impedance determinant. By comparison, we concluded that the use of TM data only and the impedance determinant in 1D inversion yield the more reliable resistivity structure of the fault compare to other methods. Based on this result, it has been shown clearly that Sumatra Fault is characterized by vertical contras resistivity indicating the existence of Aceh and Seulimeum faults which has a good agreement with the geological data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call