Abstract

We present a comprehensive analysis of electrical resistivity for liquid Fe–Si, Fe–S, and Fe–O alloys from first principles computations, covering the pressure/temperature conditions and major light element candidates inside the cores of terrestrial planets. By fitting optical conductivity with the Drude formula, we explicitly calculate the effective electron mean free path, and show that it becomes comparable to the interatomic distance for high densities and Si/S concentrations (Ioffe–Regel criterion). In approaching the Ioffe–Regel criterion, the temperature coefficient of resistivity decreases with compression for all compositions, eventually vanishes (Fe–Si), or even changes sign (Fe–S). Differences in resistivity and the degree of saturation between the iron alloys studied are explained in terms of iron–light element coordination numbers and their density dependence. Due to competing temperature and pressure effects, resistivity profiles along proposed core adiabats exhibit a small negative pressure gradient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.