Abstract

Low-resistivity and excellent-adhesion Cu(Ti) alloy films were prepared on glass substrates. Cu(0.3∼4 at%Ti) alloy films were deposited on the substrates, and subsequently annealed in vacuum at 400°C for 3 h. Resistivity of the annealed Cu(Ti) alloy films was significantly reduced to about 2.8 μΩcm. Tensile strength of the Cu(Ti)/glass interface increased to about 60 MPa after annealing. The low resistivity and excellent adhesion resulted from Ti segregation at the film surface and the Cu(Ti)/glass interface. The segregated Ti atoms reacted with atmospheric oxygen at the surface and with oxygen in glass and/or from atmosphere at the interface, and formed a TiO 2 layer at the surface and a TiO 2 layer with a small amount of Ti 2 O 3 and TiO at the interface. The layers were non-crystalline. Columnar grains in the alloy films were seen to enhance Ti segregation and subsequent Cu grain growth. The Cu grain growth also contributed to low resistivity of Cu(Ti) alloy films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.