Abstract
The singularity of the potential occurring at the source location is a key point of electrical resistivity forward modelling because it might lead to large numerical errors. To tackle this problem a classical method consists of splitting the total potential into a primary part containing the singularity and a secondary part. The primary potential is defined analytically for flat topography but requires numerical computation in the presence of topography. In that case, an accurate solution happens to be computationally expensive. For any geometry we propose to keep for the primary potential the analytic solution defined for homogeneous models and flat topography, and to modify accordingly the free surface boundary conditions for the secondary potential. The primary potential still contains the singularity and new free surface conditions ensure that the total potential still satisfies the Poisson equation. The modified singularity removal technique thus remains fully efficient even in the presence of topography, without additional numerical computation. The modified secondary potential in a homogeneous model is not null in the case of topography as it would be in the classical approach. We implement the approach with a Finite Difference method. We present potential distributions computed with this technique to illustrate its versatility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.