Abstract
A model of plasma stopping power with respect to laser-accelerated electrons is generalized. The model includes both main mechanisms of fast electron energy loss caused by Coulomb collisions with plasma electrons and ions (“collisional” mechanism), and by the field of resistive plasma current (“Ohmic” mechanism). The results are used to develop an analytical model of plasma heating by fast electrons with energies corresponding to the wide range of energy flux density of laser pulse capable to provide an intense generation of these particles. It is shown that the contribution of the Ohmic stopping power component has a significant effect on the dynamics of plasma heating by high-current fast electron beam generated by short femtosecond and picosecond laser pulses of petawatt power.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.