Abstract

We obtain a rigorous upper bound on the resistivity [Formula: see text] of an electron fluid whose electronic mean free path is short compared with the scale of spatial inhomogeneities. When such a hydrodynamic electron fluid supports a nonthermal diffusion process-such as an imbalance mode between different bands-we show that the resistivity bound becomes [Formula: see text] The coefficient [Formula: see text] is independent of temperature and inhomogeneity lengthscale, and [Formula: see text] is a microscopic momentum-preserving scattering rate. In this way, we obtain a unified mechanism-without umklapp-for [Formula: see text] in a Fermi liquid and the crossover to [Formula: see text] in quantum critical regimes. This behavior is widely observed in transition metal oxides, organic metals, pnictides, and heavy fermion compounds and has presented a long-standing challenge to transport theory. Our hydrodynamic bound allows phonon contributions to diffusion constants, including thermal diffusion, to directly affect the electrical resistivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.