Abstract

Ion-based memristive switching has attracted widespread attention from industries owing to its outstanding advantages in storage and neuromorphic computing. Major issues for achieving brain-inspired computation of highly functional memory in redox-based ion devices are relatively large variability in their operating parameters and limited cycling endurance. In some devices, volatile and nonvolatile operations often replace each other without changing operating conditions. To address these issues, it is important to observe directly what is happening in repeated operations. Herein, we use a planar device that enables direct capturing of microscopic behaviors in the nucleation and growth of metal whiskers under repeated switching to verify the microscopic origin of the large parameter variability. We report direct observations that reveal the physical origin for the large cycle-to-cycle and device-to-device variability in memristive switching, which was achieved using planar polymer atomic switches with a gap >1 μm. We find that the deposition location of metal atoms is closely related to the crystallinity of the ion transport layer (solid polymer electrolyte, SPE). The filament variability (shape, position, quantity, etc.) during different cycles and devices is indeed the main reason for the observed variability in the operating characteristics. The results shed unique light on the complexity of the operation of the ion device, that is, the evolution of the dielectric layer and metal filament must be considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call