Abstract

Graphene-based resistive random access memory devices is a promising non-volatile memory technology that combines low operation voltage and power, extremely fast write/erase speeds, excellent reliability and storage capacity of RRAM with low-cost, large area and flexibility of carbon-based technologies. However, low-cost single-step synthesis of high-quality graphene remains a challenge. In this paper, high quality graphene synthesized directly from sustainable carbon source (M. alternifolia oil) was used as electrode and pentacene/C60 as active layers in carbon-based RRAM. I-V measurements were used to demonstrate reproducible switching (rapid increase in current) at certain voltage which was reversible. Charge transport and accumulation was visualized using electric field induced optical second harmonic generation and charge modulation spectroscopy. Hole transport from graphene layer to the organic layer was the primary cause of the observed switching behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.