Abstract

The resistive switching of CeO2−x/La0.8Sr0.2MnO3 bilayer structures has been studied. First, the resistive switching (RS) characteristics of La0.8Sr0.2MnO3 (LSMO) and the CeO2−x layers are studied separately. Then, the bilayer characteristics are analyzed. It has been demonstrated that inserting a thin CeO2−x layer between the LSMO film and the metal electrodes deeply modifies the resistive switching characteristics. The metal–insulator transition of the LSMO layer results from the oxygen diffusion in and out of the film. These effects are enhanced through the introduction of the CeO2−x layer due to the fact it acts as an oxygen reservoir.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.