Abstract

Solid-state programmable metallization cells have attracted considerable attention as memristive elements for Redox-based Resistive Random Access Memory (ReRAM) for low-power and low-voltage applications. In principle, liquid-state metallization cells could offer the same advantages for aqueous systems, such as biomedical lab-on-a-chip devices, but robust resistive switching has not yet been achieved in liquid electrolytes, where electrodeposition is notoriously unstable to the formation of fractal dendrites. Here, the recently discovered physics of shock electrodeposition are harnessed to stabilize aqueous copper growth in polycarbonate nanopores, whose surfaces are modified with charged polymers. Stable bipolar resistive switching is demonstrated for 500 cycles with <10s retention times, prior to any optimization of the geometry or materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.