Abstract

Resistive switching (RS) behavior of bilayer of poly(4-vinylphenol) (PVP): molybdenum disulfide (MoS2) nanocomposite (NC) and TiO2 in resistive random-access memory (RRAM) devices were explored. Devices were demonstrated on indium tin oxide (ITO) coated glass and polyethylene naphtholate (PEN) substrates, with ITO acting as bottom electrode and Ag as top electrode for both rigid and flexible RRAM devices. The rigid devices exhibited excellent RS with very low SET and RESET voltages of ∼1 V and ∼−1.2 V, whereas the flexible devices showed average SET and RESET voltages of 1.5 V and −0.7 V. A decent repeatability was demonstrated with high on/off current ratios of more than 103 at reading voltage of 0.2 V for both types of devices. The flexible devices exhibited decent switching behavior even after bending up to a radius of 7 mm, indicating that PVP:MoS2 NC bilayer can be a promising candidate for the demonstration of high-performance RRAM devices for flexible electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.