Abstract

This paper presents the characteristics of gelatin, which can cause reproducible resistive switching and bipolar resistive switching in aluminum (Al)/gelatin (35 nm)/ITO devices. The memory devices exhibited a high ON/OFF ratio of over 10(6) and a long retention time of over 10(5) seconds. The resistive switching mechanism was investigated using the high-angle dark field transmission electron microscopy image of Al/gelatin/ITO devices in the pristine high-resistance state (HRS) and then in returning to HRS after the RESET process. The energy-dispersive X-ray spectroscopy analysis revealed the aggregation of N and Al elements and the simultaneous presence of carbon and oxygen elements in the rupture of filament paths. Furthermore, via a current-sensing atomic force microscopy, we found that conduction paths in the ON-state are distributed in a highly localized area, which is associated with a carbon-rich filamentary switching mechanism. These results support that the chelation of N binding with Al ions improves the conductivity of the low-resistance state but not the production of metal filaments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.