Abstract
The temperature dependence of the penetration depth of Nb films was determined from resistive transitions of Nb/AlOx/Nb Josephson junctions in a constant magnetic field applied parallel to the junction planes. Distinct resistance peaks were observed as temperature decreases and those peaks were found to appear when the total flux threading the junction equals an integral multiple of the flux quantum. From this condition, the penetration depth at those peak positions has been determined. The temperature dependence was well described by either the dirty local limit or the two-fluid model. This method can be useful for a highly fluctuating system such as high-temperature superconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.