Abstract

A previously unexplained difference in the resistance to enzymatic hydrolysis of 11-mer Bowman–Birk-type inhibitors of human leukocyte elastase that differ in P1 is found to correlate with the strength of a particular intramolecular hydrogen bond within the inhibitor. This transannular hydrogen bond stabilizes the side chain of the conserved P2 Thr in a ‘canonical’ +60°-rotamer χ 1 conformation and thereby directs it for a close interaction with the enzyme’s catalytic His. As the implications of this NMR analysis are neither limited to this macrocyclic scaffold derived from plant proteins nor to a particular serine protease, we present a unified analysis with inhibitory bacterial depsipeptides of 7–12 residues in length that share key design features for which we propose communal functional explanations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.