Abstract

The mammalian intestine is colonized by trillions of bacteria that perform essential metabolic functions for their hosts. The mutualistic nature of this relationship depends on maintaining spatial segregation between these bacteria and the intestinal epithelial surface. This segregation is achieved in part by the presence of a dense mucus layer at the epithelial surface and by the production of antimicrobial proteins that are secreted by epithelial cells into the mucus layer. Here, we show that resistin-like molecule β (RELMβ) is a bactericidal protein that limits contact between Gram-negative bacteria and the colonic epithelial surface. Mouse and human RELMβ selectively killed Gram-negative bacteria by forming size-selective pores that permeabilized bacterial membranes. In mice lacking RELMβ, Proteobacteria were present in the inner mucus layer and invaded mucosal tissues. Another RELM family member, human resistin, was also bactericidal, suggesting that bactericidal activity is a conserved function of the RELM family. Our findings thus identify the RELM family as a unique family of bactericidal proteins and show that RELMβ promotes host-bacterial mutualism by regulating the spatial segregation between the microbiota and the intestinal epithelium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.