Abstract
Scleroderma is a systemic, mixed connective tissue disease that can impact the lungs through pulmonary fibrosis, vascular remodeling, and the development of pulmonary hypertension and right heart failure. Currently, little is known about the molecular mechanisms that drive this condition, but we have recently identified a novel gene product that is up-regulated in a murine model of hypoxia-induced pulmonary hypertension. This molecule, known as hypoxia-induced mitogenic factor (HIMF), is a member of the newly described resistin gene family. We have demonstrated that HIMF has mitogenic, angiogenic, vasoconstrictive, inflammatory, and chemokine-like properties, all of which are associated with vascular remodeling in the lung. Here, we demonstrate that the human homolog of HIMF, resistin-like molecule (RELM)-beta, is expressed in the lung tissue of patients with scleroderma-associated pulmonary hypertension and is up-regulated compared with normal control subjects. Immunofluorescence colocalization revealed that RELM-beta is expressed in the endothelium and vascular smooth muscle of remodeled vessels, as well as in plexiform lesions, macrophages, T cells, and myofibroblast-like cells. We also show that addition of recombinant RELM-beta induces proliferation and activation of ERK1/2 in primary cultured human pulmonary endothelial and smooth muscle cells. These results suggest that RELM-beta may be involved in the development of scleroderma-associated pulmonary hypertension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Respiratory Cell and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.