Abstract

Non-hydrolysable macromolecular constituents (i.e. algaenans) were isolated from two out of seven marine microalgae investigated. Nannochloropsis salina and Nannochloropsis sp. from the class of Eustigmatophyceae produce highly aliphatic algaenans. Flash pyrolysis and chemical degradations with HI and RuO 4 allowed for the identification of their chemical structure, which is mainly composed of polyether-linked long-chain (up to C 36) n-alkyl units. The building blocks of this polymer were also recognized in lipid fractions. The green microalgae (Chlorophyceae) Chlorella spaerckii, Chlorococcum sp. and Nannochloris sp. were earlier thought to biosynthesize algaenans comprising aliphatic and/or aromatic moieties. However, a new isolation method utilizing trifluoroacetic acid (TFA) prior to the other hydrolyses revealed that the macromolecular material isolated from these three chlorophytes was either hydrolysable with TFA or artefacts from the former method. Similar to algaenans from fresh water green microalgae, the aliphatic eustigmatophyte algaenans are likely to be selectively preserved in depositional environments and might ultimately serve as source rock organic matter of marine crude oils. Furthermore, they may play an important role in the cycling of carbon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.