Abstract

Fluoroquinolone resistance in Mycobacterium tuberculosis (Mtb) is conferred by DNA gyrase mutations, but not all fluoroquinolone-resistant Mtb isolates have mutations detected. The optimal allele frequency threshold to identify resistance-conferring mutations by whole-genome sequencing is unknown. Phenotypically ofloxacin-resistant and lineage-matched ofloxacin-susceptible Mtb isolates underwent whole-genome sequencing at an average coverage depth of 868 reads. Polymorphisms within the quinolone-resistance-determining region (QRDR) of gyrA and gyrB were identified. The allele frequency threshold using the Genome Analysis Toolkit pipeline was ~8%; allele-level data identified the predominant variant allele frequency and mutational burden (ie, sum of all variant allele frequencies in the QRDR) in gyrA, gyrB, and gyrA + gyrB for each isolate. Receiver operating characteristic (ROC) curves assessed the optimal measure of allele frequency and potential thresholds for identifying phenotypically resistant isolates. Of 42 ofloxacin-resistant Mtb isolates, area under the ROC curve (AUC) was highest for predominant variant allele frequency, so that measure was used to evaluate optimal mutation detection thresholds. AUCs for 8%, 2.5%, and 0.8% thresholds were 0.8452, 0.9286, and 0.9069, respectively. Sensitivity and specificity were 69% and 100% for 8%, 86% and 100% for 2.5%, 91% and 91% for 0.8%. The sensitivity of the 2.5% and 0.8% thresholds were significantly higher than the 8% threshold (P = .016 and .004, respectively) but not significantly different between one another (P = .5). A predominant mutation allele frequency threshold of 2.5% had the highest AUC for detecting DNA gyrase mutations that confer ofloxacin resistance, and was therefore the optimal threshold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.